KCATM 2011

Algebra: Team

1. $(x+y)+z=z+(x+y)$ is an example of the \qquad property of addition.
A. commutative
B. associative
C. distributive
D. identity
2. The number 0.06022 expressed in scientific notation is
A. 6.022×10^{-2}
B. 0.6022×10^{-1}
C. 60.22×10^{-3}
D. 6022×10^{-5}
3. Given: $a \Delta b=2 a^{2}-3 b$, what is the value of $(3 \Delta 2) \Delta 1$?
A. 12
B. 47
C. 285
D. none of the above
4. If the sum of five consecutive even integers is equal to their product, what is the greatest of the five integers?
A. 4
B. 10
C. 14
D. 16
5. $\frac{\sqrt{32}+\sqrt{24}}{\sqrt{8}}$ is equivalent to...
A. $\sqrt{7}$
B. $\sqrt{2}+\sqrt{3}$
C. $2+\sqrt{3}$
D. $\sqrt{2}+3$
6. The sum of all the integers from 1 to 44 , inclusive, is subtracted from the sum of all the integers from 7 to 50 , inclusive. What is the result?
A. 6
B. 44
C. 264
D. 300
7. Factor: $25 x^{6}-121 y^{4}$
A. $55\left(x^{3}-y^{2}\right)\left(x^{3}+y^{2}\right)$
B. $\left(5 x^{3}-11 y^{2}\right)\left(5 x^{3}+11 y^{2}\right)$
C. $\left(5 x^{3}-11 y^{2}\right)\left(5 x^{3}-11 y^{2}\right)$
D. $\left(5 x^{3}+11 y^{2}\right)\left(5 x^{3}+11 y^{2}\right)$
8. If $x^{2}+6 x+8=4+10 x$, then $x=$?
A. 2
B. -2
C. 1
D. -1
9. Solve for $x: \frac{5 \mathrm{x}+1}{2}+\frac{\mathrm{x}-2}{3}=\frac{8 \mathrm{x}+8}{6}$
A. 1
B. 2
C. -1
D. -2
10. What is the slope of the line whose equation is $3 x-4 y-16=0$?
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. 3
D. -4
11. What is the slope of a line passing through the points $(3,5)$ and $(-2,6)$?
A. $-\frac{1}{5}$
B. -1
C. -5
D. $\frac{11}{5}$
12. A horizontal line has a slope of...
A. 0
B. 1
C. -1
D. undefined
13. What are the coordinates of the y-intercept of the equation $y-3 x=5$?
A. $(0,3)$
B. $(0,5)$
C. $(0,-3)$
D. $(0,-5)$
14. In the following system, what does $z=$?

$$
\begin{aligned}
& x+3 y-z=-6 \\
& 2 x+3 y+2 z=11 \\
& -3 x+4 y-2 z=-20
\end{aligned}
$$

A. -1
B. -2
C. 2
D. 5
15. Solve: $x^{4}+x^{3}+x^{2}+x=0$
A. $-1,0,1,-.25$
B. $-1,0$
C. $-1,0, i,-i$
D. $i,-i$
16. Simplify $|\pi-7|$ without using absolute value symbols.
A. $7-\pi$
B. $\pi-7$
C. $\pi+7$
D. $-\pi-7$
17. How many real solutions does the following equation have $\sqrt{6 x+19}=x-6$?
A. 4
B. 2
C. 1
D. 0
18. Solve: $2 x^{\frac{1}{2}}+3 x^{\frac{1}{4}}-2=0$
A. 16
B. 9
C. $\frac{1}{9}$
D. $\frac{1}{16}$
19. Solve: $x^{2}+12 x \geq 45$
A. $(-\infty, 15] \cup[3, \infty)$
B. $(-\infty, 3] \cup[15, \infty)$
C. $(-\infty,-15] \cup[3, \infty)$
D. $[-15,3]$
20. What is the equation of the axis of symmetry of the graph $y=3 x^{2}+12 x-2$?
A. $x=-2$
B. $x=2$
C. $y=-2$
D. $y=2$
21. What are the roots of this parabola?
A. 3 and 1

B. 1 and 0
C. 3 and -1
D. -4 and 0
22. The diagram below shows the graph of $y=f(x)$. Which answer shows the graph of $y=-f(x)$?

[A]

[B]

[C]

[D]

23. Find the midpoint of the line segment with endpoints $(2,-2)$ and $(-3,-8)$.
A. $(-.5,-5)$
B. $(-2.5,-5)$
C. $(-.5,5)$
D. $(2.5,-5)$
24. Determine the length of the line segment with endpoints $(4,-3)$ and $(-1,10)$.
A. 10
B. $\sqrt{194}$
C. $\sqrt{206}$
D. $\sqrt{58}$
25. Find the center and radius of the circle given by: $x^{2}-4 x+y^{2}-6 y+12=0$
A. $(2,3), r=\sqrt{12}$
B. $(-2,-3), r=1$
C. $(2,3), r=1$
D. $(4,6), r=1$
26. Which one of the following defines y as a function of x ?
A. $2 x^{2}-3 y=5$
B. $|y|=2 x$
C. $y= \pm|x-4|-2$
D. $x=\sqrt{y^{2}-9}$
27. Find the difference quotient for: $f(x)=2 x^{2}-3 x$
A. $4 x-3+2 h$
B. $4 x-3$
C. $4 x-3+h$
D. $4 x+h$
28. Let $f(x)=1-x^{2}$ and $g(x)=2 x+1$. Find $(f \circ g)(x)$.
A. $-2 x^{2}+3$
B. $-4 x^{2}+4 x+2$
C. $-4 x^{2}+2$
D. $-4 x^{2}-4 x$
29. Determine the remainder when $2 x^{3}-5 x^{2}+5 x-7$ is divided by $x-2$.
A. 2
B. -1
C. -11
D. -53
30. Which equation below could depict exponential decay?
A. $y=3^{x}$
B. $y=1.4^{x}$
C. $y=0.5^{x}$
D. $y=2^{x}$
31. If the square root of x is greater than x, then x could be
A. 0
B. $1 / 2$
C. 2
D. 4
32. The expression $(4 a+2 b)-(2 a-3 b)-(a-b)$ when simplified is
A. $6 a+6 b$
B. $a+6 b$
C. $-2 b$
D. $6 b$
33. Simplify: $\frac{2-3 i}{5+7 i}$
A. $\frac{2}{5}-\frac{3}{7} i$
B. $\frac{2}{35}-\frac{3}{35} i$
C. $-\frac{11}{74}-\frac{29}{74} i$
D. $\frac{11}{74}-\frac{29}{74} i$
34. What is the point of intersection of the lines $5 x+2 y=4$ and $x-2 y=8$?
A. $(2,3)$
B. $(-2,3)$
C. $(2,-3)$
D. $(-3,2)$
35. Which is the equation of a line whose slope is undefined?
A. $x=-5$
B. $y=7$
C. $x=y$
D. $x+y=0$
36. Which of these equations represents a line parallel to the line $2 x+y=6$?
A. $y=2 x+3$
B. $y-2 x=4$
C. $2 x-y=8$
D. $y=-2 x+1$
37. Simplify: i^{641}
A. 1
B. i
C. -1
D. $-i$
38. Rationalize: $\frac{8}{\sqrt[4]{8}}$
A. $\frac{1}{8}$
B. $\sqrt[4]{8}$

C $\sqrt[4]{2}$
D. 1
39. Solve: $5 x^{2}+11 x=-1$
A. $\frac{-11+\sqrt{141}}{10}$
B. $\frac{11+\sqrt{101}}{10}$
C. $\frac{11+\sqrt{141}}{10}$
D. $\frac{-11+\sqrt{101}}{10}$
40. Factor: $6 x^{2}+23 x+10$
A. $(3 x+2)(2 x+5)$
B. $(2 x+10)(3 x+1)$
C. $(2 x+2)(3 x+5)$
D. $(2 x+1)(3 x+10)$
41. Factor: $12 a x+15 b x-8 a y-10 b y$
A. $(4 a+5 b)(3 x-2 y)$
B. $(4 a-5 b)(3 x+2 y)$
C. $(4 a+2 b)(3 x-5 y)$
D. $(4 a-5 b)(3 x-2 y)$
42. Factor: $120 a^{3}-480 a$
A. $120 a(a-2)^{2}$
B. $(a+2)(a-2)$
C. $120 a\left(a^{2}-2\right)$
D. $120 a(a+2)(a-2)$
43. $f(x)=\frac{x^{2}}{x^{3}+1}$ is:
A. an even function
B. an odd function
C. a one-to-one function
D. None of the Above
44. Which one of the following polynomials has a real zero between $x=1$ and $x=2$?
A. $\quad P(x)=3 x^{3}-2 x^{2}-3 x+1$
B. $P(x)=2 x^{3}-5 x^{2}-7 x-11$
C. $P(x)=5 x^{4}+2 x^{3}+3 x^{2}-2 x-4$
D. $P(x)=5 x^{4}+3 x^{2}+2 x-9$
45. If P is a polynomial and a is a number for which $P(a)=0$, then:
A. $(x+a)$ is a factor of P
B. $(x-a)$ is a factor of P
C. $(0, a)$ is an intercept of the graph P
D. $\mathrm{P}(0)=\mathrm{a}$
46. Find the slant asymptote of $F(x)=\frac{x^{2}+3 x+1}{x+1}$.
A. $y=x+1$
B. $y=2 x+1$
C. $y=x-1$
D. $y=x+2$
47. Determine the equation of the horizontal asymptote of the graph

$$
F(x)=\frac{x^{4}-6 x^{3}+7 x-2}{x^{4}-4 x^{2}+1}
$$

A. $y=1$
B. $y=0$
C. $y=\frac{4}{3}$
D. $y=-2$
48. The population of a suburb, in thousands, is modeled by $P(t)=\frac{720 t}{0.6 t^{2}+15}$, where t is the time in years after the year 2000. In what year will the population of the suburb reach its maximum?
A. 2001
B. 2002
C. 2005
D. 2008
49. Given $\log _{b} 5=0.8271$ and $\log _{b} 3=0.5646$, evaluate $\log _{b} 45$.
A. 0.93396
B. 1.3917
C. 1.8965
D. 1.9563
50. Approximate $\log _{3} 19$ to four decimal places.
A. 2.5405
B. 2.7114
C. 2.6801
D. 2.6334
51. Solve $3^{2 x+1}=\frac{1}{243}$.
A. $x=2$
B. $x=3$
C. $x=-2$
D. $x=-3$
52. Find the Vertex and Directrix of the parabola given by $x^{2}-4 x-8 y-20=0$.
A. Vertex: $(-3,2)$; Directrix : $x=-5$
B. Vertex : $(4,-3)$; Directrix : $y=1$
C. Vertex: $(-2,3)$; Directrix : $y=5$
D. Vertex : $(2,-3)$; Directrix : $y=-5$
53. Find the equation of the ellipse that has center $(-1,4)$, has foci at $(-1,8)$ and $(-1,0)$ and the length of whose minor axis is $\sqrt{3}$.
A. $\frac{x^{2}}{3}+\frac{y^{2}}{19}=1$
B. $\frac{(x-1)^{2}}{19}+\frac{(y+4)^{2}}{3}=1$
C. $\frac{(x-1)^{2}}{19}+\frac{(y-4)^{2}}{3}=1$
D. $\frac{(x+1)^{2}}{3}+\frac{(y-4)^{2}}{19}=1$
54. Find the eccentricity of the ellipse given by $25 x^{2}+9 y^{2}=225$.
A. $\frac{4}{5}$
B. $\frac{5}{4}$
C. $\frac{9}{16}$
D. $\frac{16}{25}$
55. Find the partial fraction decomposition of $\frac{14 x+2}{(x-5)(x+7)}$
A. $\frac{6}{x-5}+\frac{8}{x+7}$
B. $\frac{8}{x-5}+\frac{6}{x+7}$
C. $\frac{6}{x-5}+\frac{-8}{x+7}$
D. $\frac{-6}{x-5}+\frac{8}{x+7}$
56. Given $A=\left[\begin{array}{cc}6 & -3 \\ 4 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & -3 \\ 9 & -7\end{array}\right]$ find $A-2 B$.
A. $\left[\begin{array}{cc}10 & 3 \\ -14 & 15\end{array}\right]$
B. $\left[\begin{array}{cc}2 & -9 \\ 22 & -13\end{array}\right]$
C. $\left[\begin{array}{cc}8 & 0 \\ -5 & 8\end{array}\right]$
D. None of the Above
57. Find the product $\left[\begin{array}{cc}8 & -1 \\ 7 & -4 \\ -3 & 0\end{array}\right]\left[\begin{array}{cc}11 & 2 \\ 0 & -1\end{array}\right]$.
A. $\left[\begin{array}{ccc}88 & 35 & -6 \\ 0 & -12 & 0\end{array}\right]$
B. $\left[\begin{array}{l}88-33 \\ 43-15 \\ 15-6\end{array}\right]$
C. $\left[\begin{array}{cc}88 & 17 \\ 77 & 18 \\ -33 & -6\end{array}\right]$
D. None of the Above
58. Find the twelfth term of $(2 x-y)^{15}$ when expanded.
A. $-1863680 x^{12} y^{3}$
B. $3640 x^{3} y^{8}$
C. $-21840 x^{4} y^{11}$
D. $2795520 x^{11} y^{4}$
59. The sequence $4,6,9,13.5, \ldots$ is:
A. an arithmetic sequence
B. a geometric sequence
C. the Fibonacci sequence
D. the binomial sequence
60. Find $\sum_{k=0}^{4}(-1)^{k+1}(3 k-2)$.
A. 4
B. -8
C. -10
D. -4

